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ABSTRACT 

An orbit averaging numerical integration method for 

determining the variation in shape and orientation of an earth 

satellite orbit is discussed. 
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ORBIT AVERAGED VARIATION OF 

EARTH SATELLITE ORBITAL ELEMENTS 

I. INTRODUCTION 

In this note we sketch the derivation of the equations for the osculating 

elliptic orbital elements of an earth satellite in terms of an angular indepen- 

dent variable and discuss an orbit averaging technique of integrating the 

equations.     We employ equations which are valid for small eccentricity and 

inclination. 

Because we are interested in earth satellite orbits for which moon 

perturbations are difficult to handle analytically,   we discuss the numerical 

integration of the orbit averaged equations. 

Gaussian quadrature of orbit averaged definite integrals is much faster 

in computer time than the exact integration of the equations of motion.    Closed 

form analytic formulas for the definite integrals would be even faster to evalu- 

ate,   but as was said the derivation of such formulas is extremely intricate 

for far out satellites. 

The method of orbit averaging yields reasonably accurate predictions 

of the shape and orientation of the orbit,   but not of the specific position in 

the orbit.    A first order method of evaluating the orbit averaged definite inte- 

grals might cause the predictions to get out of phase with time.     A second 

order method is described which uses a first order orbit averaged linear 

variation in the elements in evaluating the definite integrals.     It would be 

more accurate to use a first order analytic non-orbit averaged variation in 

the elements in the second order evaluation of the definite integrals.    Any 

such formulas would be easy to add to the computer program that is being 

written to implement the formulas in this note. 

Explicit formulas for the perturbing accelerations due to the sun,   moon 

and earth gravitational potential harmonics are presented in order to docu- 

ment the computer program as completely as possible. 



II. CARTESIAN EQUATIONS OF MOTION 

The equations of motion of an earth satellite are 

,2   k k , d   x       _        _   jix_ „k 

dt r 

k k dxk k+3       , x        = x ,.       =   x when   t    =    t o at o o 

where 

k   =    1,   2,   3 (1) 

k th x        = k       cartesian position component of satellite 

relative to earth      (k    =    1,2,3) 

dxk k+3 . th , 
i. x =     k cartesian velocity component ol 

satellite relative to earth   (k   =    1,2,3) 

JI*77 

u.     = gravitational constant times mass of earth 
3    -2 (units are    L.   T     ) 

F k       component of acceleration on satellite additional 

to the central force acceleration   (k    =    1,2,3) 

12        3 
If the perturbing accelerations    (F   ,   F   ,   F   )   were zero,   the motion 

satisfying    (1)   would follow an elliptic trajectory.     Even with non-zero perturb- 

ing accelerations there are elliptic elements associated with the postion and 

velocity   (x   , . . . ,   x   )    at time   t ,   called the osculating elements.     These are 

the elements of the elliptic orbit that the satellite would follow given the position 



and velocity   (x   , . . . ,   x   )   at   time   t   if the perturbing accelerations were 

turned off after time   t . 

The elliptic elements we shall employ are 

a    =    Semi-major axis (distance unit consistent with the distance 

unit in   \x) 

e     =    Eccentricity    (0   <    e   <    1) 

I     =    Inclination   (0°   <;    I   <;     180°) 

Q     =    Right ascension of ascending node    (0      <   Q   <    360   ) 

i\)     =    Argument of perigee    (0      <   uu   <    360   ) 

M     =    Mean anomaly at time   t      (0   ^    M     <    3 60   ) 
o 7 o o 

See Ref.   1 or any book on celestial mechanics for   the formulas for the position 

and velocity as a function of time in terms of the orbital elements and for the 

orbital elements in terms of the   position and velocity at a given time.    Addi- 

tional notation for elliptic orbits which we shall employ is 

2 
p    =    a( 1 — e   )    =    semi-latus rectum 

1/2    -3/2 
n    =     |JL a =   mean motion 

M   =    M      +    n(t — t   )    =   mean anomaly at time    t o o 7 

^     =    eccentric anomaly 

Y     =    true anomaly 

T\     =    uo    +   Y    =   angle measured along the orbital plane from the 

ascending node to the true position of the satellite 

<tf    =    in    +   Q   =   longitude of perigee 

r\    -   T] +  a 

In order to study the behavior of the osculating elements with time the 

cartesian equations of motion   (1)   can be numerically integrated and the 

osculating elements evaluated at each tabular point.     However,   numerical 

integration of   (1)    takes a fair amount of computer time and becomes pro- 

hibitive when studying a large variety of orbits. 



III.       EQUATIONS FOR OSCULATING ELEMENTS 

Equations of motion   (1)   can be written in the form 

dx 
dt 

dx 
k+3 

k+3 

ux 
dt 

+    Fx 

k k k+3 k+3 
x      =   x      ,      x =   x when   t o o 

>k = 1,  2,   3 

(2) 

=   t 

Let   (B  ,   B  ,   8  ,   ß  ,   ß  ,   6  )    =   (a,   e,   I, Q, ru,   MQ)   be the osculating elliptic 

orbital elements at time   t   with the functional relationship 

xk   =   xk(B1,. . . ,   ß6,   t)    ,    k   -    1, 6 (3! 

being given by the usual elliptic orbit formulas in such a way that 

We have 

3x_ 
at -        X 

k+3 

k    =    1,   2,   3 

ax 
k+3 ux 
£t 

(4) 

dx 
dt 

6 
=    I 3x*    dß- 

j=l   3 J      dt at 
k   -    1,...,   6 5) 



Equations    (2),   (3),   (4)   imply 

6       *xl 

Z      M 

öx 6 

3=1     Bß 

k+3 

J 

dBJ 

dt 

dBJ 

dt 

=   0 

=   F1 

k   =   1,  2, 3 !6) 

We introduce the Lagrange brackets 

3     /   _    k k+3 
CB1. 0J] = E l^r ^V 

k=l \ ae ößJ 

_    k+3 
ox ^x 

ae' 3Bj    / 

i,  j   =   1 6 (7) 

For a given value of   i   (between    1    and    6)   multiply the first equation in   (6) 

by   —    :—    and the second equation in   (6)   by    -    for   k   =    1,2,3    and 
SB1 ÖB1 

then add the resulting six equations.     We obtain 

j=l 

.k   ox1 

k-1 ÖBJ 
i    =    1,....   6 

The Lagrange brackets    [ß    ,   S ~\    are evaluated and equations    (8)    solved for 

dß*ydt   (j    =    1, . . . ,   6)    in most books on celestial mechanics; see,   for example, 

Ref.   2,   pages 273-307.    We shall just give the final result. 

Let   e       be a unit vector at the satellite   pointing from the earth to the 
—» —♦ 

satellite; let   e      be a unit vector normal to   e      in the plane of the instantaneous 
s r r 

position and velocity vectors of the satellite and making an acute angle with the 

velocity vector; and let   e        =   €      x   e       ■     Denote the components of the 1 w r s r 



acceleration   (F   ,   F   ,   F   )   in the    c   ,   €      and   e        directions by   R,   S   and 
r       s w ' 

W  ,   respectively.     Then Gauss' form for the equations for the osculating ele- 

ments are 

da 
dt 

n/l - e2 

—  [Resinf    +   S   - ] 

H        AT 
^      = [RsinY    +   S(cos §    +   cosY)] 
dt na 

sin I 

dl_ 
dt 

dQ 
dt 

dq) 
dt 

rW 
c o s ( u)   +   Y) 

naVl - 

rW 
sin  (u)    +   Y ) 

na   / 1  - e 

/T7 
nae 

[- R   cos    Y    +   S(-  + 1) sin Y] 

f dn 
-   cos  I    — 

dM 
dt 

=     n   +    R   - 
2r             1  -  e 1 —  —y    +        cos Y 

L      na2 nae J 

_   S    ^1    [1-e2    +   i] 
nae      L a  J 

>    (9) 

The equation for the initial mean anomaly   M      is easily derived from the 

above if   M      rather than   M   is regarded as the primary orbital element. 



IV.       CHANGE OF INDEPENDENT VARIABLE 

The eccentric anomaly    5 ,  true anomaly   Y    and mean anomaly   M   in 

an elliptic orbit are related by 

1       - /T"1 
tan   ■=-     =     /   -;      tan   — 2 1 — e 2 

M   =       ?   —   e sin £ 

From these formulas and equations    (9)   we find after some very intricate 

elliptic orbit computations 

dT! dY du     _   (M>P)^Z      /\ r3 f   r      . w\ 
dT    =   dT    +   dT    -    ^V-      ^1   "   -    cot   I   sm   n •   W j 

For the compound angular quantity   r\     =   r\   +   Q    we then have 

~ 1/2 
dr|    _   (M-P)   

j ,    r sin r\ • W      1 — cos I 
dt 2 ;      .1/2 sin I 

r (M-P) 

We define 

H    =      3  (10) 
,   .   r        1 — cos I T1T 1 + —     :—    sm n •   W up sin I ' 



Expressing equation   (9)    in terms of the independent variable   rf   instead of 

t   we obtain   (see Ref.   3) 

da 
cffj 

de 

dl 

dO     _ 
a*? " 

do) 
d^    = 

dt 
d^    = 

0   2   2 
2a   r H 

> 
[R e sin Y   +   S( 1  + e cos Y)t 

-^    fR sin Y    +   -   [2 cos Y + e( 1 +  cos  Y)]   • S] 
M- P 
3 

r H 

^P 
COS  T)   •    W 

r  H     sin Ti     ,   w 
up      sin I 

>   (11) 

■^  f-RcosY   +   S •   (1  + -) sin Yl   -   cosI^S 

2 
r K 

(HP 
172 

We could replace the equation for the semi-major axis   a   with that for the 

semi-latus  rectum   p: 

dp 
d?f 

,   3 2r K (12) 

V.        SMALL ECCENTRICITY AND INCLINATION 

Equations    (11)   are singular when   e    =   0 .     Therefore as in Ref.   2, 

p.   287,   we introduce the variables 

H   =    e sin   uo 

K    -    e cos  a) n: 



and replace the equations in    (11)   for    e    and   uo   by 

1H_ —-  {- R cos Ti   +   S - H(l + cos  Y) 

+ 2S -  sin rf   +   S( 1 --) sm Y cos Ttfl  +   K( 1- cos I) 42 
p P arj 

>    (14) 
dK 
d^ 

r  K 
[R sin T)    +   S - K(l + cos!) 

|X p 

+ 2S - cos rf   - S(l --) sin Y  sin w] -   H(l - cos I) ^L 

We used the variable   ~   instead of   a)   in   (13)    to ameliorate the singu- 

larity that occurs when   1=0      or    180     ,   which is also why we used   r\ 

instead of   -n    as the independent variable.    If   I   is not near    0      or    180     , 

say    10    < I <  170     ,   we can employ the equations in   (11)    for    I   and   Q. 

However, if   I   is near    0      or    180     ,   we follow Ref.   2,   p.   288 and make the 

change of variables. 

P   =    tan    I   sin   Q 

Q    =   tan    I   cos  Q (15) 

and replace the equations in  (11) for    I   and   Q   by 

dP 
drf 

dQ 

drT 

3 
r K 

M-P 

3 

JJ. fsinrf   + (cos I— 1) cos 0 sini] 

*- cos   I                                     -• 

r H      w ("cos rY + (1 — cos I) sin Q sin r\ 
M-P            L 2T ^            u cos   I                                     J 

:i6) 

We cannot entirely   replace    I ,  Q   by    P ,   Q   because    P ,   Q   and the equa- 

tions they satisfy are singular when   I   =   90 



VI.      ORBIT AVERAGED VARIATION 

Changing notation,   let 

ß 
1 

=   a S 

P if I near 0° or 180° 
I otherwise 

,Q if I near 0° or 180° 
Q   otherwise 

(17) 

Then equations    (11),   (14)    and    (16)   can be written in the symbolic form 

drf 

dt 

fNe1,..., ß5, ?r, t) 

f6»1....,  B5, ?[,  t) 

k   =   1 5 

;i8) 

Exact integration of these equations would give the exact motion of the body. 

The osculating orbital elements are slowly varying functions of time, 

unlike the cartesian coordinates.    As a function of   r\ ,   the behavior of an 

osculating element might be as in Fig.   1.     During one revolution   frf   increas- 

ing by   2TT)    the value of an element oscillates; but from one revolution to the 

next there is a secular or long periodic trend.     If it is sufficient to know this 

mean behavior of the orbital elements rather than their exact behavior,   we 

can follow Ref.   3 and use a method of orbit averaging which results in con- 

siderable savings in computer time. 

Namely,   in a first order theory we hold the elements    (0   , . . . ,   ß   ) 

constant in the right side of   (18)    and evaluate   t   from   r\   using these ele- 

ments and elliptic orbit formulas.     Then the first order mean changes in the 

elements during revolution   j    are 

10 



Fig.   1.     Possible behavior of an osculating elliptic orbital element 
as a function of the angular variable r\ . 

11 



JL      fNß1,. . - ,  ß5,  rf,  t) drf ,    k   =   1,. .. ,   5 

- r 
^2 

^2 

period At. f6^ B5,  rf,  t) drf 

19) 

where   rf.    is the value of   rf   for which an orbit is considered to commence, 
k k k where   ?L    =   rf,    +   2IT   and when   8      =   8-   ,    .    the value of   8      at the end 

of the previous revolution  (j-1) . 

We can evaluate the integrals in   (19)   to second order by taking 

k      k        ffi-V    k 8*     =   8K_j   +   —^—-    A8._j       ,       k   =   1 5 (20) 

where   AB-   ,    is the variation in the elements extrapolated from one or more 

immediately preceding revolutions.     The first revolution for which there is 

no previous revolution can be integrated twice,   the first time with the orbital 

elements constant and the second time with the variation in the orbital ele- 

ments calculated in the first integration.    Thereafter,   each revolution need 

only be integrated once with the variation in the elements in the integrands 

being extrapolated from the variation determined in one or more previous 

revolutions. 

Instead of using the orbit averaged first order linear variation of the 

elements   in the second order integration,   better accuracy could be obtained 

by using non-orbit  averaged   first order variations in the elements.     These 

would have to be derived analytically. 

It is desirable to use a second order evaluation of the integrals    (19) 

in order to calculate the period accurately from one orbit to the next.    How- 

ever,   the accurate calculation of the secular and long period behavior of the 
1 5 

elements    (0   , . . . ,   B   )    giving the shape and orientation of the orbit are not 

so dependent on the use of a second order theory,   except insofar as their pre- 

diction might get out of phase with time. 

Our main concern is with earth satellite orbits for which the moon 

moves appreciably during an orbital revolution and the ratio of the dis- 

tances of the satellite and the moon from the earth is not small.     These 

12 



facts cause difficulties with analytic treatments.     Therefore,   the doctrine 

expounded in this note is to evaluate the integrals in   (19)    numerically.    An 

accurate numerical second order orbit averaged theory might still require 

an analytic non-orbit averaged first order theory instead of the   first order 

theory given by    (20).     It would be easy to add such analytic expressions to 

a computer program which numerically evaluates the integrals    (19).     We 

therefore do not persue the possibilities of analytic non-orbit averaged first 

order theories in this note. 

A computer program would run faster with completely closed analytic 

formulas than it would if the integrals in   (19)    were evaluated numerically. 

However,   the numerical integration of the definite integrals in   (19)    is still 

faster than numerically integrating exact equations of motion   (1).    Since the 

cartesian coordinates enter implicitely in the right side of   (1)    a predictor- 

corrector numerical integration method is employed and from    100   to   200 

or more steps made per orbital revolution.     The number of steps cannot be 

decreased even if less accuracy is  required because the integration becomes 

unstable.    On the other hand,   everything in the integrands in   (19)   are ex- 

plicite functions of the independent variable.     Therefore,   an integration tech- 

nique such as Gaussian quadrature can be employed with many fewer steps 

per orbital revolution. 

VII.     ELLIPTIC ORBIT FORMULAS 

Given values of   (0   , . . . ,   8   )    and   r\   we must evaluate the various 

quantities which enter in the numerical integration of the right sides of   (19). 

Of course,    ß       =   a   .     By   (13)    and    (17)    we have 

r  2 2 3 2f/2 

e    =     [(B   )      +   (B   ) (2i; 

If   e    =   0   we take   uu    =   0   and   UJ    =   Q    by convention.     If   e   >    0   we have 

sin uu      =        B   /e 

cos uu      =       ß   /e (22] 

uu      =       uu — Q 

13 



4 5 
We either have   I    =   ß     ,    Q    =   ß      or by   (15) 

2 -2-11/2 
tan I      =     [(ß4)      +   (ß5) 

sin 0     =     ß4/tan I (23] 

cos Q     =     ß   /tan I 

We then calculate 

Y    =   rf - 8f 

Ti     -    rf -  0 

p     -     a(l-e2) (24) 

1/2   -3/2 
n      =     |J.  '   a      ' 

1  + e cos Y 

We calculate the transformation matrix 

B. . = cos Q cos T)   —   sin Q sin r\ cos I 

B,~ = - cos Q sinT]     —   sin Q cos r] cos I 

B, _ sin Q sin I 

B?, = sin Q cos r|    +   cos Q sin r\ cos I 

B^2 ~ —   si-n 0 sin r\   +   cos Q cos r\ cos I (25) 

B^^ - —   cos Q sin [ 

B~ . = sin T) sin I 

B^? = cos r\ sin I 

B^- = cos I 

-*-*-* 12       3 
Then the relations between the unit vectors    e,,   e?,   e~    in the   x   ,   x   ,   x 

directions and the unit vectors    e   ,   e   ,  6       defined in Section III are r       s       w 

14 



e       =     E B.,   e. 

3 ^ 
£      -     S B      e.                                                      (26) 

j=l j2     J 

3 
?       =      E B.„   "?• w           j=1 j3      j 

and the cartesian coordinates of the satellite relative to the earth are 

xk   -     rBkl        , k   =    1,   2,   3                                                    (27) 

To calculate the time   t   from the epoch when   rf   was   ?f   , we perform 

the following steps: 

3ta„-Y/HH -! 

*o = 2*«-yrH -(-v^) 
Mo    =    §0   -   e sin?o (28) 

M    =    %   —   es in ? 

t     =    I(M-M   ) n o 

The next two sections derive the expressions for the acceleration on 

the satellite 

-* 1 -* 2 -*• 3 -* 
F   =   F   Cj   +   F   ez   +   FD e3 (29) 

due to the sun,   moon and earth gravitational potential harmonics at a given 

15 



time.     The components of   F   in the   e   ,   e      and   e        directions are then ^ r       s w 

R    =    F    •    e r 

S    =    F    •    e (30) 
s 

W    =    F    •    e w 

VIII.   ACCELERATION DUE TO THE SUN AND MOON 

We define 

k th x = k       coordinate of the moon relative to 

We have 

me 

cs 

se 

x se 

the earth   (k    =    1,2,3) 

k th 
x = k       coordinate of the earth-moon barycenter 

relative to the sun   (k    =    1,2,3) 

x = k       coordinate of the sun relative to the 

earth   (k   =    1,   2,   3; 

M mass of sun 
s 

M = mass of moon 
m 

M mass of earth 
e 

M = M      +   M c em 

y =        gravitational constant (so that   (JL    =   yM   ) 

=        _   (x
k     -       »1    x

k      )       ,       k   =   1,  2,  3 (31) 
V cs M me / v      ' c 

16 



Given the time we read a magnetic tape and interpolate to determine 
k k x ,   x        (k   =    1,   2,   3) .     The already existing magnetic tape and computer 

subroutines which we possess give the coordinates of the moon and sun in the 

coordinate system referred to the mean equinox and equator of    1950.0  .     We 

have so far left the coordinate system in which we integrate the equations of 

motion unspecified.     Given the subroutines   which already exist,   we shall use 

the inertial system referred to the mean equinox and equator of   1950. 0  . 

Having determined the position of the sun and moon relative to the 

earth,   the perturbing accelerations due to these bodies on the motion of the 

satellite relative to the earth are the differences in the accelerations on the 

satellite and earth: 

y  r 
oc=m, s 

M 

r   k 

a 
Lab 

k   n 
ae 

ae 

k    =    1,   2,   3 T32) 

where for   a    =   m,   s    and    X   =    b,   e 

ccb 

ax 

k k 
x —    X ae 

LH'2] 
k 

1/2 

=   1,  2,  3 

IX. ACCELERATION DUE TO EARTH GRAVITATIONAL POTENTIAL 
HARMONICS 

12       3 
Let    (y   ,   y   ,   y   )    be a coordinate system with origin at the center of 

mass of the earth,   with   y      axis pointing along the axis of rotation of the earth, 

with   y      axis normal to   y      lying in the plane which contains the    y      axis and 
2 

Greenwich,   and with   y      axis completing the right hand system.     The relation 
1       2       3 between this coordinate system and the one    (x   ,   x   ,   x   )    referred to the mean 

equinox and equator of    1950. 0   is 

17 



3 

kt 

k   =   1,  2,  3 (33: 

Z      A.,    y 
t=l 

L£k 

where the orthogonal rotation-nutation-precession matrix    (A..)    is discussed 

in Section X. 

We introduce polar coordinates    (r,   0,   0)    rotating with the earth by 

We have 

y      =   r cos 8    cos   0 

y      =    r   sin 8    cos 

y      =    r   sin 0 

0   ^    r   <   oo 

0   ^   0   <    2TT 

*    2 
-1   < 

(34) 

3 3 
Z     (xV    =    S     (yV 

-t=l -1=1 
:35) 

sin 0 

cos 

r    <, = !       3l 

+  /l - sin' 

(36) 

cos 8 

sin 8 

3 
£       A. r cos 0       " .    "R 

 L_      s      A       / 
rcos0     . _.        2£ 

(37) 

18 



Outside the earth the gravitational potential of the earth can be expressed 

in spherical harmonics by 

U   = ■-H'- 
oo n 

+    E S 
n=2     h 

J 
£       -£   P  (sin0) ~      n       n n=2    r 

= 1    r       u 
C   .   cos h 9    +   S nh ,   sin h 9 nh 

'     Pnh<Sin0)} :38) 

where    P      and    P ,     are the Leeendre ploynomials and generalized Leeendre n nh 
functions,   respectively (see Section XI).     The summation starts with   n    =   2 

rather than with   n    =    1    because the origin of the coordinate system is at the 

center of mass of the earth. 

Since to a high degree of approximation the    y      axis is a principal mo- 

ment of inertia axis,   we have 

C21    =   ° S21    =   ° 139) 

The    J      are called the zonal harmonic coefficients and the    C   ,    ,   S  .     are n nh nh 
called the tesseral harmonic cosine and sine coefficients.    C        and   S        are nn nn 
also known as  sectorial harmonic coefficients.     The sign and notation con- 

ventions are those adopted by the Smithsonian Astrophysical Observatory; 

see Ref.   4. 

The cosines and sines of multiples of the longitude   9    can be calculated 

by 

cos 2 0 

sin 2 0 

cos h 9 

sin h 9 

2 A .2 cos    9   —   sin 

2 sin 9 cos 9 

cos(h -1)9 cos 9   —   sin(h -1)9  sin 9 

sin(h- 1) 9 cos 9    +  cos(h- 1) 9  sin« 

(40) 
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The acceleration on the satellite due to the gravitational attraction of 

the earth is   — grad U .     Thus,   the   k       component of the acceleration in the 
12       3 

(x   ,   x   ,   x   )   coordinate system is 

dU [ix +   \x    T 
öx n=2    r 

Jn    f(n+i; 
n+2 L      r 

P  (sin«) P'(sin0) r   °Zi2&\ 
n n ^   k   J 

asin0' 

ax 

+    u.   T Z      —Ur  \ [c   .   cos h 9    +   S  ,   sin h el  •  T- 
n=2     h=l    rn+2   |L   nh nh J      L 

[n+l)x P  ,(sin nh 

+    p;h,sin0)    r*2™£\   +   h[-   Cnhsinh9   +   Snh cos h 9] 

öx 
(41 

where by   (36) 

and by   (37) 

o  sin 
=   A01    —   —     sin 3k r (42) 

—    sin 

cos 

o9 
1 

öx 

5« 

ax 

l _J_    ^cosl    cQsq    _    x      cosQ 

k 2 
öx r r cos 0        Ik cos 0 

1 a cos 0 1 
Ani    - r cos 0       2k cos ox 

sin 0   —   -y    sin 8 
r 

Multiplying the first equation by   — sin 9    and the second by   cos P    and adding 

we obtain 

a9 
ax k    ~   c H5T [A2kcose   ~  Aiksin9] (43: 
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k     3 For use in   (1)    and   (30)    the   —   fix  /r      term should be dropped from 

(41).     The order of the harmonics to be employed depends on the case being 

considered.     For all satellites it is necessary to include    J_  .     For most 

satellites the inclusion of a few additional zonals would be sufficient.     For a 

synchronous satellite we would certainly want to include   C~?    and   S~?  . 

X.   ROTATION- NUTATION- PRECESSION OF THE EARTH 

The transformation matrix   (A..)   appearing in   (33)    is defined by 

r A 
ii 

21 

31 

L12 

'22 

32 

A13 " 

23 

33 

SNP (44) 

12       3 where    S   gives the transformation between coordinates    (y   ,   y   ,   y   )    rotating 

with the earth and those referred to the true equinox and equator of date, 

where    N   gives the transformation between coordinates referred to the true 

equinox and equator of date and those referred to the mean equinox and equa- 

tor of date,   and where    P   gives the transformation between coordinates refer- 
12       3 red to the mean equinox and equator of date and those    (x   ,   x   ,   x   )    referred 

to the mean equinox and equator of    1950. 0 .     Matrix multiplication follows 

the usual row   x   column rule,   so that,   for instance, 

3 
(NP)..    -      E 

XJ k=l 
ik      kj 

(45) 

Following Ref.   5,   p.   482,   we define the angles 

23041'948T + 0:'302T + 0!'0179T 
° 2 3 z    =       2304!'948T + U»093T + 0!'0192T 

0     =       2004:'255T - 0:'426T2 - 0'.'0416T3 (46) 
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where    T    is measured in tropical centuries of   36524.21988    ephemeris days 

from the epoch    1950.0    (JED 2433282.423)   to the instant of interest.     Then 

by Ref.   6,   p.   3 1,   the precession matrix   P   at this instant is 

11 

12 

13 

21 

22 

23 

31 

32 

33 

cos C    cos 0 cos  z — sin C     sin z 
*o ^o 

— sin C    cos 6 cos  z — cos C     sin z 
^o ^o 

— sin 9 cos  z 

cos C    cos 9  sin z + sin f    cos  z 
*o ^o 

— sin C    cos 9  sin z + cos C    cos  z 
^o bo 

— sin 9  sin z 

cos C     sin 9 
^o 

— sin C     sin 9 
^o 

cos 9 

J 

(47) 

Let   T    denote the time from the epoch    1950.0    (JED 2433282.423)    in units 

of 10,000 ephemeris days.     Then by Taylor's theorem we have 

p
jk 

7 
n=0 

i      d   p-i, 

n! 
dT 

II 
j,   k = 1,   2,   3 

T  = 0 (48) 

Treating the coefficients in   (46)   as exact,   some simple calculations show 

that the terms up to the fifth power in the Taylor expansions    (48)    are: 
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11 

12 

13 

21 

22 

23 

31 

32 

33 

1.0-2. 22603 398052517 x 10"5T
2
 - 2. 6903 5 85 32 53 66 x 10"

9
T
3 

+ 8. 191221606878 x 10"UT
4
 + 1.79948222850 x 10"

14
T
5 

- 6. 119064710033514 x 10"
3

T - 5.06975739290688 x 10'
7

T
2 

+ 4. 5321716219079 x 10_8T3 + 8.619581795926 x 10
_12

T
4 

- 1.02943658327 x 10"
13

T
5 

-2.660399722772102 x 10"
3

T + 1.54818397804898 x 10"
7

T
2 

+ 1.9729201591810 x 10"
8

T
3
 + 1.9607302 53 191 x 10'

12
T
4 

- 4.39298354075 x 10
_14

T
5 

6. 119064710033514 x 10"3T + 5.06975739290688 x 10"
7

T
2 

- 4. 5321716219079 x 10"
8

T
3
 - 9. 636891635856 x 10"

12
T
4 

+ 1.02604298897 x 10"
13

T
5 

1.0- 1. 87214764627888 x 10" 5T
2
 - 3 . 1022 173 55 13 68 x 10"

9
T
3 

+ 6. 882478825535 x 10"
U

T
4
 + 1. 91215207447 x 10"

14
T
5 

- 8. 13957902909886 x 10'
6

T
2
 - 5.8309700675934 x 10'

10
T
3 

+ 2.994360606802 x 10~
U

T
4
 + 5.71739459043 x 10"

15
T
5 

2.660399722772102 x 10'
3

T - 1.54818397804898 x 10"
7

T
2 

- 1.9729201591810 x 10"
8

T
3
 +3.791379581151 x 10'13

T
4 

+ 4.50404085077 x 10"
14

T
5 

- 8. 13957902909886 x 10"
6

T
2
 + 1.8168268497009 x 10

_1
°T

3 

+ 3.024323 052 660 x 10"UT
4
 + 2.58550054981 x 10"17

T
5 

1.0-3. 53886334246294 x 10"
6

T
2
 + 4. 1187882260017 x 10"

10
T
3 

+ 1. 308742781343 x 10'
U

T
4
 - 1. 12 669845971 x 10"

15
T
5 

> (49) 

The mean obliquity of the ecliptic is (see Ref.   6,   p.   98) 

e      =     23°27'08:'26 - 46V845T - 0:'0059T2 + 0!'00181T3 

o 50) 
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where    T   is measured in Julian centuries of   36525    ephemeris days from 

the epoch    1900    January   0.5   E. T.     =   JED 2415020.0   to the instant of 

interest.     Let   AY    and   AG    be the nutations in longitude and obliquity,   re- 

spectively,   as given by the series in Ref.   6,   p.   44-45.     The true obliquity 

of the ecliptic is then 

e    =   e     +  Ae 
o 

(51) 

The nutation matrix is given by (see Ref.   6,   p.   43) 

N    = 

N 1 1 

N 21 

N 
31 

N 12 

N 
22 

N 
32 

N 
13 

N 23 

N 33 

1 — AY cos e - AY sin G 

AY cos e 1 -Ae 

AY cos e Ae 1 

52! 

Sidereal time is defined as the hour angle of the first point of Aires 

(equinox point).     We therefore have 

11 

'21 

3 1 

12 

22 

32 

13 

23 

33 

cos 0 sin© 0 

sin® cos © 0 

0 0 1 

53) 

where   ®    is the Greenwich true sidereal time.     By Ref.   6,   p.   72, 

(H)    =   0       +   AY cos G 
o :54) 

where   G)       is the Greenwich mean sidereal time.     By Ref.   5,   p.   478,   the 

Greenwich mean sidereal time   ®      at   0      universal time on the day of inter- o y 

est is 
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A      =   6h38m45S836   +   8,640,184S542T   +   0S0929T2 (55) o 

where    T   denotes the number of Julian centuries of   3 6525   days which,   at 

midnight beginning of day,   have elapsed since mean noon on    1900    January 0 

at the Greenwich meridian (Julian Date   2415020. 0).     The Greenwich mean 

sidereal time ©       at a given instant   UT   of universal time on that day is then 

d© 

®o = ^o + sr x UT (56) 

where   by Ref.   6,   pp.   75-76, 

d®~ -10 
=     (1.002737909265   +   0.589x10       T) dt 

sidereal time seconds per universal time second (57) 

The equations of motion are integrated as a function of Ephemeris Time   ET, 

and the value of   ET— UT   is given in Ref.   5,   p.   vii . 

It was implicitely assumed in Section IX that the coordinate system 
12       3 

(y   i   y   »   y   )   defined in terms of the axis of rotation of the earth is fixed in 

the crust of the earth.     This is not exactly true and in fact if   (44)    is to 

define the transformation matrix for coordinates fixed in the earth to those 

referred to the mean equinox and equator of    1950. 0    it should read   A = WSNP 

However,   the wobble matrix   W   is so nearly the identity matrix that it can be 

ignored for the problem discussed in this note. 

XI.       LEGENDRE POLYNOMIALS AND FUNCTIONS 

By Ref.   7,   pp.   83 and 327,   the definitions of the Legendre polynomials 

P      and generalized Legendre functions    P  ,     are 
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Po(Z) 

Pn(Z) 

P     (Z) 
no 

Pnh(Z» 

1      dn
( z

2 - Dn 

2nn!            dZn 

Pn(Z) 

1_ z
2)h/2     d p  (z) 

dzh      n 

n    =    1,2,... 

n    =   0,   1,2,... 

h    =    1 n 

!58) 

!59) 

From these definitions it follows that 

Pn(Z) 
i=0 2   (n-i) !   (n-2i)  !   i ! 

(2n-2i)  ! ,n-2i 60) 

Pnh<Z) 

[^] 
j _ z2,h/2      ^                  (2n-2i) I 

."«      ^ n  
i=0     2   (n-i) !   (n-h-2i)  !   i ! 

,n-h-2i 
(61) 

where    [x]    denotes the largest integer less than or equal to   x .    A compu- 

ter subroutine to evaluate the Legendre polynomials and functions and their 

derivatives should use the various recursion formulas that exist. 

In Ref.   4 expansion    (38)   is employed with   C   ,   ,   S  ,     and   P ,     used 

in place of   C   ,   ,   S  ,     and    P ,   ,   where r nh nh nh 

nh 
72(2n i 

(n 
+  1) (n - h)  ! 

+ h)  ! nh 
(62) 

This is because the integral of   P . (sin 6)   times    cos h 9    or    sin h 9    over & nh ^ 
the sphere is    4TT .     However,   Ref.   4 does not use the corresponding normali- 

zation for the zonal harmonics 

P      =    /2n +  1      P 
n n 163) 
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In using the values of   J    ,   C   ,    ,   S  ,     given in Ref.   4 from fits to satellite & n nh        nh 
data these different definitions should be taken into account. 

XII.     GAUSSIAN QUADRATURE 

The method of numerical integration that should be used in evaluating 

the definite integrals    (19)   is Gaussian quadrature.     Let   P   (x)    be the    n 

Legendre polynomial.     Following Ref.   8,  pp.   319-325,   we have 

/       f(y) dy    -     Z     Hf(y ) (64) 
J-\ i=l     x     x 

where    y.    is the    i        zero of   P    (y)   and where 71 m J 

H     - 2 

i        m P       ,(y.) P'   (y.) m-1    I      m 7i 

2(i -y-) 

The formula    (64)   is exact for polynomials    f   of order   2m— 1  .     For the 

integrals of interest to us we have 

2 l   ft   + ^I 

„■ j = lj2ir(j-l)        ~ 

since   ?L    =   rf.    +   2TT .     To evaluate 

/  «to d?r 
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we define 

~        ,b — a. ,b + a. 

so that 

jf nfo«r -^   / f[(^r - <^>] dy 

b —a     ^      TT<.(",b—av ,b + aN 
y.   +  (—Ö—) £, H''t( 

2    '   yi 

Tables of y. , H.(i = 1, . . . , m) are given in Ref. 9 for m = 1, . . . , 16 

The values of I and m should be input and chosen to give the desired accu- 

racy in the fastest time. 
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